
Week 1 Notes

1. Operating Systems (OS):
- An operating system is the software layer between user applications and

hardware.
- It serves as a resource manager.

I.e. It allows the proper use of resources like hardware, software and data.
- It also serves as a control program (protection).

I.e. It controls execution of user programs to prevent errors and improper
use of the computer.

- Turns ugly hardware into beautiful abstractions (file and directories).

- You can use Unix commands like cd, mv, cat, ls, etc to navigate

directories and files.
- You can use the man command to see what a command does.

2. Files:
- A file is a name collection of data with some attributes:

- Name
- Owner (User and Group)
- Size
- Permissions
- Time of creation
- Last Access
- Last Modification
- Location on disk

- To get info on a file in Unix, we can use:
1. ls -l
2. stat

Week 1 Notes

- A data structure called inode stores the info of a file, including disk blocks
which contain the file’s data.

- A file is identified by its inode number.

3. Directories:
- A directory is a collection of files and sub-directories.
- In Unix, every directory is a file.
- The root, denoted by /, is a special directory.
- A directory entry maps a file name to an inode.

Week 1 Notes

4. Directory Hierarchy:
- The directory hierarchy is an acyclic graph because of links.

5. Links:
- Sharing of files can be implemented by creating a new directory entry

called a link, which is a pointer to another file or directory.
- There are 2 types of links:

1. Hard Link:
- Created with ln <target> <name of link>
- The second directory entry is identical to the first and shares

the same inode number. Furthermore, both are files.
- If the first directory entry is deleted, the second one is still

there.
2. Soft Link:

- Created with ln -s <target> <name of link>
- The second directory entry points to a small file containing

the path of the first directory entry.
- The second directory entry is a link, and has a different

inode number than the first.
- If the first directory entry is deleted, then we have a

dangling reference.
6. Permissions:

- File permissions have the follow setup: -----------
- After the first dash, the next 3 dashes are for the owner. Then, the

following 3 dashes are for the groups. Lastly, the final 3 dashes are for
others.
I.e. -(---)(---)(---)
The red dashes are for the owner.
The blue dashes are for the groups.
The orange dashes are for others.

- Directory permissions have the follow setup: d----------
- After the d, the first 3 dashes are for the owner. Then, the following 3

dashes are for the groups. Lastly, the final 3 dashes are for others.
I.e. d(---)(---)(---)
The red dashes are for the owner.
The blue dashes are for the groups.
The orange dashes are for others.

- Each entries specify 3 permissions, read, write and execute.

Week 1 Notes

 read write execute

Denoted by r w x

File Permission Gives authority to
open and read a file.

Gives authority to modify the
contents of a file.

Gives authority to
execute a file.

Directory
Permission

Gives authority to run
ls on a directory.

Gives authority to add, remove
and rename files in a directory.

Gives authority to cd
into a directory.

- Example:
drw-rw-r-- means that:

- The owner has read and write permissions, but not execute
permissions on the directory

- The group has read and write permissions, but not execute
permissions on the directory.

- Others have read permissions on the directory.
- You can use the command chmod to change permissions.
- Examples:

1. chmod u+x fname will give the user who owns fname execute
permissions.

2. chmod g+r fname will give all users in group read permissions.
3. chmod a+rwx will give all users all permissions.

7. Shell:
- A shell is a commandline interpreter.
- It is the interface between the user and an OS.
- The shell is a program that:

1. Waits for input commands.
2. Analyzes commands.
3. Determines what actions are to be performed.
4. Performs the actions.

- Shells can execute all the Unix commands, do I/O redirection, pipelining of
commands, filtering output of commands, job control, shell programming
and more.

8. Input and Output Redirection:
- Programs read from standard input (keyboard), write the results on

standard output (screen) and write errors to standard error (screen).
- You can redirect input, output and errors using the following:

1. > filename redirects the output to the file.
I.e. It replaces the file’s original text with the output.

2. >> filename appends the output to the file.

Week 1 Notes

3. < input file redirects input
- Standard output (stdout) is denoted by 1.
- Standard error (stderr) is denoted by 2.
- Examples

1. ls > output.txt will overwrite the contents of output.txt with the output
of ls.

2. ls >> output.txt will append the output of ls to the contents of
output.txt.

3. ls -z 2>output.txt will overwrite the contents of output.txt with an
error message, because ls -z is not a valid command.

9. Pipelines:
- Use | to send the output of one command to the input of another

command.
10.Filters:

- A filter reads from standard input, processes the input and writes to
standard output.

- Some useful filters
- wc: count words, lines, characters
- grep: filter lines that do or do not match a pattern
- uniq: remove repeated lines
- sort: sorts input
- head: output only the first lines of the provided input
- tail: output only the last lines of the provided input
- sed: a stream editor to perform text transformations

11.Job Control:
- A job/process is a program in execution. Use ps to view processes.
- Foreground job has control of the terminal.
- Background job runs concurrently with the shell in the background.
- To run a program in the background, append & to the name of the

program.
- At any point, a program can be suspended. Hit <ctrl> z to suspend the

current foreground job.
- The command jobs gives you a list of jobs and each is associated with a

number.
- fg [num] puts job num in the foreground.
- bg [num] puts job num in the background.
- kill %num kills job num.

CSCB09 Week 2 Notes

1. Pipe:
- Denoted by “|”.
- Allows the user to run 2 or more commands consecutively.
- The syntax is: command1|command2|...|commandn. Note that data flows

left to right. This means that the output of command1 is the input for
command2, and so on.

2. Filter:
- A filter is an Unix command that reads from standard input, processes the

input and writes on standard output.
I.e. It takes some input, processes the input and produces some output
based on the input.

- Some Unix filter commands are:
a. Grep

b. Sort
c. Uniq

d. Cat
e. More

f. Head

g. Tail
h. Wc

3. Shell Scripting:
- We use shell scripting because it helps us automate things.
1) File Expansion:

- * means 0 or more characters.
- ? means exactly 1 character.
- [x-y] means one character in the range x to y, inclusive.
- [^oa] means any character except o or a.
- ~ means home directory.
- ~u means home directory of user u.
- E.g.

a. ls *.txt will list out all the text files in that directory.
b. rm * will remove everything in that directory.
c. cp ?? ~ will copy everything with 2 characters in that

directory and put it into the home directory.
2) Creating a shell script:

a. Create a file using any editor and name the file with the
extension .sh.

b. Start the script with #!/bin/bash, or any of its variant. This is called
the shebang, and is the path to your bash interpreter. It tells the
shell how to interpret/execute the commands in this file.
Note: The shebang is not the same on every machine. Use the
 which command to find the right one for your computer.

c. Write some code. You can put any Unix commands in the script file.
d. Save the file as filename.sh and execute the script using

i. bash filename.sh

CSCB09 Week 2 Notes

ii. ./filename.sh ← No Spaces!!!
 Note: The file must be executable. Use the chmod command to
 change execute permission, if needed.

3) Variables and Comments:
a) A comment is denoted by #.
b) In any Unix system, including shell, there are 2 types of variables:

i) System Variables:
- These are the built-in variables.
- One of the most useful built-in variables is PATH.

ii) User-defined Variables:
- To assign a variable to a value, you do var=value.

Note: There are no spaces before or after the equal
sign.

- To get the value of a variable, you do $var.
- Variables are not declared, just assign a value.
- Variables have no type they can hold any type of

data.
- If you access a variable without a value, you will get

an empty string instead of an error.
- Variable names can only start with a letter or an

underscore sign. However, after the first letter,
variable names can have numbers, too.

- Variables defined in a script are lost when the script

ends, unless you use the source command to run the
script.

- The subshell does not have access to the variables of

the parent shell, unless you export the variable.

CSCB09 Week 2 Notes

4) Quotes in Shell:

- Back quotes ``: Anything in between back quotes would be

treated as a command and would be executed.
I.e. Back quotes does command substitution.

- Single quotes ‘’: All special characters between these quotes lose

their special meaning.
I.e. Single quotes force shell to take string literally.

- Double quotes “”:Expand variables and do command substitution.

Most special characters between these quotes lose their special
meaning with these exceptions:

i) $

ii) `
iii) \$

iv) \'
v) \"

vi) \\
- E.g. Suppose we have 3 directories, a, b and c in our current

working directory.
$ echo * will print a b c
$ echo ls * will print ls a b c
$ echo `ls *` will print a b c
$ echo “ls *” will print ls *
$ echo ‘ls *’ will print ls *
$ echo `*` will create an error.

- E.g. Consider the shell script below:
#!/bin/sh
$ date
$ echo Today is `date`
$ echo "Today is `date`"
$ echo ’Today is `date`’
The output is:
Thu Jan 17 10:58:13 STD 2019
Today is Thu Jan 17 10:58:13 STD 2019
Today is Thu Jan 17 10:58:13 STD 2019
Today is `date`

CSCB09 Week 2 Notes

5) Read:
- Read one line from standard input and assigns successive words to

the specified variables.
- Leftover words are assigned to the last variable.
- E.g. Suppose we have this shell script:

#!/bin/sh
echo "Enter your name:"
read firstName lastName
echo $firstName
echo $lastName

If the user runs the script and enters Alexander Graham Bell for
read, then the output is:
Alexander
Graham Bell

6) Commandline Arguments:
- Commandline arguments are placed in positional parameters. The

commandline arguments are denoted by $1, $2, … . After $9, we
use ${10}.

- Command line arguments allows the users to either control the flow
of the command or to specify the input data for the command.

- Positional parameters in a shell script are the command line
arguments passed to a shell script.

- $0 is the name of the script
- $# is the number of commandline arguments

- $* and $@ list all commandline arguments

- E.g. Consider the shell script below:
#!/bin/sh

echo firstname: $1

echo lastname: $2

echo Firstname is $1 and lastname is $2

echo $#

echo $@

echo $*
If I run the script and type, $ bash test.sh rick lan, the output is:
firstname: rick

lastname: lan

Firstname is rick and lastname is lan

2

rick lan

rick lan

7) Positional parameters and set and shift:
- The set command assigns its parameters to the positional

parameters and all previous positional parameters are thrown
away.

CSCB09 Week 2 Notes

- E.g.
$ set pizza spaghetti rice
$ echo $1 $2 $3 will prints pizza spaghetti rice
The set command stored pizza in $1, spaghetti in $2 and rice in $3.

- Shift moves all positional parameters to the left.
I.e. $1 becomes the old $2, etc.

- The syntax for the shift command is shift number, which will shift
the positional parameters that many times to the left.
E.g. shift 1 will shift the positional parameters one to the left.
E.g. shift 2 will shift the positional parameters two to the left.
E.g. shift 0 will not do anything.

- The shift command is useful for iterating over all positional
parameters.

- E.g. Consider the shell script below:
#!/bin/sh

set x y z

shift 1

echo $@

This will print y z

- E.g. Consider the shell script below:
#!/bin/sh

set x y z

shift 0

echo $@

This will print x y z

8) if statement and test command:
- The test command takes an expression and returns 0 if its true and

1 if its false.
- E.g.

if test $str1 = $str2;
then
 echo "The strings are identical"
else
 echo "The strings are different"
fi

- A short form of test is [].
- E.g.

if [$str1 = $str2] ← The spaces are mandatory.
then …

CSCB09 Week 2 Notes

Test commands for String Description

-z string True if empty string

str1 = str2 True if str1 equals str2

str1 != str2 True if str1 not equal to str2

Test commands for Integer Description

int1 -eq int2 True if int1 equals int2

int1 -ge int2 True if int1 >= int2

int1 -gt int2 True if int1 > int2

int1 -lt int2 True if int1 < int2

int1 -le int2 True if int1 <= int2

-a and

-o or

Test commands for Files and Directories Description

-d filename Exists as a directory

-f filename Exists as a regular file

-r filename Exists as a readable file

-w filename Exists as a writable file

-x filename Exists as an executable file

- The syntax for the if statement is:
if [condition1]
then
 Statement(s) to be executed if condition1 is true
elif [condition2]
then
 Statement(s) to be executed if condition2 is true
else
 Statement(s) to be executed if no condition is true
fi

- In bash the if statement checks the return value of a condition and
proceeds to “then” if the return value is 0, to “elif” if the return value
is not 0, and to “else” if none of the return values are 0.

CSCB09 Week 2 Notes

- Unix requires that programs return 0 for success and some other
number for failure. You can use $? to check for the return value.

- E.g. Consider the shell script below:
#!/bin/sh

a=10

b=20

if [a != b] ← The spaces are mandatory.
then

 echo "Correct: $?"

else

 echo "False: $?"

fi
The output of this is: Correct: 0

- E.g. Consider the shell script below:
#!/bin/sh

a=10

b=20

if [a == b] ← The spaces are mandatory.
then

 echo "Correct: $?"

else

 echo "False: $?"

fi
The output of this is: False: 1

9) expr:
- Since shell scripts work by text replacement, we need a special

function for arithmetic.
- expr works only for integer arithmetic.
- E.g. Consider the shell script below:

#!/bin/sh

x=1+3

y=`expr 1 + 3` ← The spaces are mandatory.
z=`expr 1 * 5` ← Need to escape the * sign first.
echo $x

echo $y

echo $z
The output is:
1+3
4
5

CSCB09 Week 2 Notes

10) while loop:
- The syntax is:

while [condition]
do
 some code
done

- E.g. Consider the shell script below:
#!/bin/sh

x=10

while [$x -gt 0]
do

 echo $x

 x=`expr $x - 1`
done
The output is:
10

9

8

7

6

5

4

3

2

1

- We can also use the while loop to read from a file, one line at a
time.

- E.g.
#!/bin/bash
file="my_file.txt"
while read line
do
 echo $line
done < $file

- We can also use the while loop to iterate over arguments.
- E.g.

#!/bin/sh
while test "$1” != “”
do
 echo $1
 shift
done

- Don’t use this one unless you know that the argument list will
always be short.

CSCB09 Week 2 Notes

11) for loop:
- The general syntax is:

for var in something
do
 some code
done

- E.g.
a. #!/bin/bash

for i in 1 2 3 4 5
do
 echo $i
done

b. #!/bin/bash
for i in `ls`
do
 mv $i $i.txt
done

This appends all filenames in the current directory with the
extension .txt. A file called x would now be called x.txt.

c. #!/bin/bash
for i in $*
do
 mv $i $i.txt
done

This appends all files whose names are given to the script as
command-line arguments with the extension .txt.

Week 3 Notes

1. Functions in Shell Scripts:
- Also called subroutines.
- Arguments are passed through positional parameters.
- Variables defined outside the function are visible within as long as they

are declared before the function calling.
- Variables defined inside the function are visible outside.
- Return value is stored in “$?”.
- Must return a number.
- E.g. Consider the shell script below:

#!/bin/sh
myfunc() {

arg1=$1
arg2=$2
echo $globalvar $arg1
return 100

}
globalvar="I like to eat”
myfunc pizza spaghetti
echo $?
The output is:
I like to eat pizza.
100

- E.g. Consider the shell script below:
#!/bin/sh
myfunc() {

arg1=$1
arg2=$2
echo $globalvar $arg1
return 100

}
globalvar="I like to eat”
myfunc pizza spaghetti
echo $arg2
echo $?
The output is:
I like to eat pizza.
spaghetti
0

- E.g. Consider the shell script below:
#!/bin/bash
func(){
var1=3
echo $var2
return 100

Week 3 Notes

}
func ← Function calling
var2=5
echo $var1
The output is:

3

- E.g. Consider the shell script below:
#!/bin/bash
func(){
var1=3
echo $var2
return 100
}
var2=5
func ← Function calling
echo $var1
The output is:
5
3

2. Introduction to C:
- C is a low-level language: machine access
- C is a high-level language: structured
- C is a small language, extendable with libraries
- C is permissive: assumes you know what you’re doing
- Good: efficient, powerful, portable, flexible
- Bad: easy to make errors

3. Basic Data Types:
- char: Integer; 8 bits Note: 8 bits = 1 byte
- int: Integer; 32 bits
- long: Integer; 64 bits
- float: Real number; 32 bits
- double: Real number; 64 bits
- In an assignment statement make sure that the variable on the left is at

least as wide as the expression on the right.
- Note: In C, there is no string type. We have to use char arrays.

4. Variables:
- Variable names cannot start with a number or an underscore.
- Variables need to be declared.
- Variables have no default value. If a variable is not initialized, there’s no

guarantees about what its content is.
- One function’s variables are not visible to other functions.

(I.e. they are local)
- Variables are only visible inside the block they were declared in, with the

exception of global variables declared outside of the main function.

Week 3 Notes

- Examples of variable declaration:
- int a;
- int a = 10;
- char a, b, c;
- char a = “a”, b = “b”, c = “c”;

- The type of a variable must be a valid C type.
5. If statement:

- You must have an if, but the else if and else are optional. Furthermore,
you can have as many else if’s and at most, one else. The if is followed by
the else if’s, if there are any, followed by an else, if there is any. Lastly,
once a condition is met, the rest of the else if’s and else won’t be tested.

- If there is any variables created in the if, else if, else block, then once you
exit the block, the variable is no longer accessible.

- We can’t mix declarations and non-declaration in a block.
- Syntax:

if (condition 1){
some code …

}
else if (condition 2){

some code …
}
else{

some code …
}

- Example:
int a = 10;
if (a < 20){

printf(“a is less than 20.”);
}
else if (a == 20){

printf(“a is equal to 20.”);
}
else{

printf(“a is greater than 20.”);
}

6. While loop:
- If there is any variables created in the while loop, then once you exit the

loop, the variable is no longer accessible.
- We can’t mix declarations and non-declaration in a block.
- Syntax:

while (condition){
some code ...

}

Week 3 Notes

- Example:
int a = 10;
while (a < 20){

printf(“%d”, a);
a++;

}
7. For loop:

- If there is any variables created in the for loop, then once you exit the
loop, the variable is no longer accessible.

- Syntax:
for (init; condition; increment) {
 statement(s);
}
Note: In older versions of C, you cannot have the initialization in the for
loop. I.e. You can’t do for (int i = 1; …)

- Here is the flow of control in a 'for' loop:
1. The init step is executed first, and only once. This step

allows you to declare and initialize any loop control
variables. You are not required to put a statement here, as
long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the
loop is executed. If it is false, the body of the loop does not
execute and the flow of control jumps to the next statement
just after the 'for' loop.

3. After the body of the 'for' loop executes, the flow of control
jumps back up to the increment statement. This statement
allows you to update any loop control variables. This
statement can be left blank, as long as a semicolon appears
after the condition.

4. The condition is now evaluated again. If it is true, the loop
executes and the process repeats itself (body of loop, then
increment step, and then again condition). After the condition
becomes false, the 'for' loop terminates.

- Example:
for (int i = 1; i < 20; i++){

printf("%d \n", i);
}

8. Functions:
- Every C program has the main function, main().
- A function declaration tells the compiler about a function's name, return

type, and parameters.
The syntax is return_type function_name(parameter list);

- A function definition provides the actual body of the function.
- Functions must be declared before first use then defined.

Week 3 Notes

- return_type function_name (parameters) {
some code …

}
Return Type: A function may return a value. The return_type is the data
type of the value the function returns. Some functions perform the desired
operations without returning a value.

Function Name: This is the actual name of the function. The function
name and the parameter list together constitute the function signature.

Parameters: A parameter is like a placeholder. When a function is
invoked, you pass a value to the parameter. This value is referred to as
actual parameter or argument. The parameter list refers to the type, order,
and number of the parameters of a function. Parameters are optional; that
is, a function may contain no parameters.

Function Body: The function body contains a collection of statements
that define what the function does.

- If a function is to use arguments, it must declare variables that accept the
values of the arguments. These variables are called the formal
parameters of the function. Formal parameters behave like other local
variables inside the function and are created upon entry into the function
and destroyed upon exit.

- While calling a function, there are two ways in which arguments can be
passed to a function:
1. Call by value: This method copies the actual value of an argument

into the formal parameter of the function. In this case, changes
made to the parameter inside the function have no effect on the
argument.

2. Call by reference: This method copies the address of an
argument into the formal parameter. Inside the function, the
address is used to access the actual argument used in the call.
This means that changes made to the parameter affect the
argument.

By default, C uses call by value to pass arguments. In general, it
means the code within a function cannot alter the arguments used
to call the function.

Week 3 Notes

- Example:
#include <stdio.h>
#include <stdlib.h>

int min(int num1, int num2); /* Method declaration */

int main (){
 int a = 0;
 int b = 100;
 int result;
 result = min(a, b);
 printf("The minimum value is %d", result);
 return 0;
}

/* Method Definition */
int min (int num1, int num2){

 int result;

 if (num1 < num2){
 result = num1;
 }

 else {
 result = num2;
 }

 return result;
}

Week 3 Notes

9. Memory Model:
- The memory for a process (a running program) is called it’s address

space.
- Memory is just a sequence of bytes.
- A memory location (a byte) is identified by an address.

- E.g.

The answer to both questions is no.

Week 3 Notes

10.Arrays:
- Arrays in C are a contiguous chunk of memory that contain a list of items

of the same type.
- In particular, the size of the array is not stored with the array. There is no

runtime checking.
- To declare a single-dimensional array, you do:

type arrayName [arraySize]
type can be any valid C type.
arraySize must be an integer constant greater than zero.
E.g.
int a[10]; This creates an array of size 10 that holds ints.

- You can initialize an array by any of the following methods:
1. Initialization Loops:

for (int i = 0; i < N; i++){
a[i] = i;

}
2. Static Initialization:

int a[5] = {1,2,3,4,5};
Note: The number of values in the curly brackets cannot exceed
the size of the array.
int a[] = {1,2,3,4,5}; also works.

- Note: The first element of an array is its 0th index.
I.e. a[0] will get the first element of a.

- You can set or change values for a specific element, too.
E.g.
int a[4] = 50; will set 50 as the 5th element of array a.

- An element is accessed by indexing the array name. This is done by
placing the index of the element within square brackets after the name of
the array.
E.g.
int x = a[9]; This will set x to a’s 10th element.

- There are multi-dimensional arrays, too.
- The simplest form of multidimensional array is the two-dimensional array.

A two-dimensional array is, in essence, a list of one-dimensional arrays.
To declare a two-dimensional integer array of size [x][y], you do type
arrayName [x][y]. Here, x is the number of rows and y is the number of
columns.
E.g.
int a[3][4]; This creates a 2-D array with 3 rows and 4 columns.

Week 3 Notes

- You can initialize an array by any of the following methods:
1. Initialization Loops:

for (int i = 0; i < N; i++){
for (int j = 0; j < M; j++){

a[i][j] = i*j;
}

}
2. Static Initialization:

int a[3][4] = {
 {0, 1, 2, 3} ,
 {4, 5, 6, 7} ,
 {8, 9, 10, 11}

 };
int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11}; also works.

- To access an element of a 2-D array, you do
int x = a[i][j];

11.Strings:
- Strings are actually one-dimensional array of characters terminated by a

null character '\0'. Thus a null-terminated string contains the characters
that comprise the string followed by a null.

- Since there’s the null character at the end, the array’s size is one bigger
than the length of the word. If a word has 3 letters, the size of the array is
4.

- E.g.
char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};
char greeting[] = "Hello";
Both ways are valid.

12.Pointers:
- A pointer is a higher-level version of an address.

I.e. A pointer is a variable whose value is the address of another variable.
- The general form of a pointer declaration is: type *var;

E.g.
char *cptr;

- Assigning a value to a pointer:
char c = 'a';
cptr = &c;

- cptr gets the value of the address of c.
- The value stored in the variable cptr is the address of the memory

location where variable c is stored.
- Dereferencing a pointer:

*cptr = 'b';
- Stores ‘b’ at the memory address that is stored in cptr.

char d = *cptr;
- Takes the contents of the memory address stored in cptr and stores

them in the variable d.

Week 3 Notes

- Without an asterisk, pointer references an address.
- With an asterisk, pointer references the value at that address.
- Always use the same type of pointer as the variable it examines.

(I.e. ints for ints, chars for chars)
- Initialize the pointer before using it. Set it to an address of some variable.
- When you declare an array, you are creating a pointer to the array’s 0th

element. (In C, pointers and arrays are very similar.)
E.g.
int a[3] = {1, 3, 5};
int *p = a; // same as p = &a[0];
Note: When pointing to an array, you do not need to use &.

- The array access operator [] is really only a shorthand for pointer
arithmetic + dereference.

- These are equivalent in C: a[i] == *(a + i)
E.g.
a[0] == *p
a[1] == *(p+1)
a[2] == *(p+2)

- Pointer arithmetic respects the type of the pointer.
E.g.
int i[2] = {1, 2};
int *ip;
ip = i;
*(ip + 1) += 2; // This puts 4 in i[1].
E.g.
char c[2] = {'a','z'};
char *cp;
cp = c;
*(cp + 1) = 'b'; // This puts b to c[1].

- C knows the size of what is being pointed at from the type of the pointer.
- When you pass arrays as parameters, what is being passed to the

function is the name of the array which decays to a pointer to the first
element. Since C doesn’t store the size of arrays, you should also input
the size of the array.

- int sum(int *a, int size) and int sum(int a[], int size) are both legal, but it’s
bad form to use the latter. This is because you really are passing a
pointer-to-int not an array, you still don't know how big the array is.

- Note: Use array notation rather than pointer arithmetic whenever you
have an array.

Week 3 Notes

13.Scope Rules:
- There are three places where variables can be declared in C

programming language:
- Inside a function or a block which is called local variables.
- Outside of all functions which is called global variables.
- In the definition of function parameters which are called formal

parameters.
- Local Variables: Variables that are declared inside a function or block.

They can be used only by statements that are inside that function or block
of code. Local variables are not known to functions outside their own.

- Global Variables: Variables that are defined outside a function, usually on
top of the program. Global variables hold their values throughout the
lifetime of your program and they can be accessed inside any of the
functions defined for the program. A global variable can be accessed by
any function.
I.e. A global variable is available for use throughout your entire program
after its declaration.

- Formal Parameters: Formal parameters, are treated as local variables
with-in a function and they take precedence over global variables.

14.Special Characters and Miscellaneous Information:
- #include <stdio.h>: Include this at the top of your program. It allows you

to access some of C’s built in functions and libraries.
Note: There are other, similar tags.

- printf: If you have #include <stdio.h>, then this is one of the built in
features you can use. It allows you to print things on the console.

- %d: Take the next argument and print it as an int.
- %s: Take the next argument and print it as a string.
- \n: Newline
- /* */: Comments
- &: Allows the user to access an item’s memory location.
- Because C is permissive, the error messages are often random and/or

weird.
- In C, 0 is false and 1 is true.
- To compile a C program, do the following:

gcc -Wall -o programName programName.c
gcc is the compiler.
-Wall may help create some meaningful error messages.
-o programName creates the object file.

CSCB09 Week 4 Notes

1. Strings:
- Strings are not a built-in data type.
- A string is an array of characters terminated with a null character (‘\0’).

Therefore, the size of the array must be 1 larger than the length of the
string.

- Initializing a string (Either way works):
- char course_name[8] = {‘c’,’s’,’c’,’b’,’0’,’9’,’h’,’\0’};
- char course_name[8] = “cscb09h”;

- C has no built-in support, but many string functions are provided in a
library. We can use #include<string.h> to access the built in functions.

- Common string operations:
- Length of a string:

- The length is the number of non-null characters.
- E.g. Suppose we have

char course_name[50] = “cscb09h”;
The length of the string is 7, because there are 7 non-null
characters.

- Note: The length of a string is not the same as the size of
the array. In the example above, the size of the array is 50,
while the length of the string is 7.

- Library function that returns length of a string:
strlen (const char *str)

- Example of strlen:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main (){
 int len;
 char x[8] = "cscb09";
 len = strlen(x);
 printf("Length of %s is %d\n", x, len);
 // The output is "Length of cscb09 is 6"
 return 0;
}

- Copying a string:
- Two library functions:

1. char *strcpy (char *dest, char * src)
2. char *strncpy(char *dest, const char *src, int n)

Like strcpy, but copies at most n characters from src
- Example of strcpy and strncpy.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

CSCB09 Week 4 Notes

int main (){
 char src[50], dest[50];
 strcpy(src, "This is source");
 strncpy(dest, "This is destination", 10);
 printf("This is src : %s\n", src);
 // Prints "This is src : This is source"
 printf("This is dest : %s\n", dest);
 // Prints "This is dest : This is de"
 return 0;
}

- Concatenating two strings:
- char *strcat (char *dest, const char *src)

Appends src to dest (including the null byte of src),
overwriting the null byte of dest.

- char *strncat(char *dest, const char *src, int n)
Like strcat, but takes at most n characters from src (up to
null byte). If src has >= n characters, it takes n characters
and adds null byte.

- Both return a pointer which is usually ignored because it
equals dest.

- The problem with strncat is that it is unsafe, if src is too long.
E.g. Consider the code below:
char s1[6] = “abc”;
strncat(s1, “def”, 6);
The second line would cause an overflow because the size
of the array has to be at least 1 bigger than the size of the
string. Therefore, n should be <= sizeof(s1) - strlen(s1) - 1.

- Example of strncat.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main (){
 char src[50] = “This is source”;
 char dest[50] = “This is destination”;
 strncat(dest, src, 14);
 printf("Final destination string : %s", dest);
 // Prints "Final destination string :This is
 destinationThis is source"
 return 0;
}

CSCB09 Week 4 Notes

- Example of strcat.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int min(int num1, int num2);

int main (){
 char src[50] = "This is source";
 char dest[50] = "This is destination";
 strcat(dest, src);
 printf("Final destination string : %s", dest);
 // Prints "Final destination string : This is
 destinationThis is source"
 return 0;
}

- Comparing two strings:
- int *strcmp (const char *s1, const char *s2)
- if Return value < 0 then it indicates str1 is less than str2.
- if Return value > 0 then it indicates str1 is more than str2.
- if Return value = 0 then it indicates str1 is equal to str2.
- int *strncmp (const char *s1, const char *s2, int n)

Same, but compares only the first (at most) n characters.
- Example of strcmp.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main (){
 char str[10] = "abcdefg";
 char str2[10] = "bcdefgh";
 int ret;

 ret = strcmp(str, str2);

 printf("%d", ret); // Prints -1

 return(0);
}

- Example of strncmp.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

CSCB09 Week 4 Notes

int main (){
 char str[10] = "abcdefg";
 char str2[10] = "bcdefgh";
 int ret;

 ret = strncmp(str, str2, 1);

 printf("%d", ret); // Prints -1

 return(0);
}

- Searching a string for occurrence of a character:
- char *strchr(const char *s, int c)

This finds the first occurrence.
- char *strrchr(const char *s, int c);

This finds the last occurrence.
- Both return a pointer to the character if found, NULL

otherwise.
- Example of strchr.

#include <stdio.h>
#include <string.h>

int main () {
 int len;
 char str[] = "abcdefghc";
 char ch = 'c';
 char *ret;

 ret = strchr(str, ch);

 printf("String starting from the first %c is : %s", ch, ret);
 // Prints "String starting from the first c is : cdefghc"

 return(0);
}

CSCB09 Week 4 Notes

- Example of strrchr.
#include <stdio.h>
#include <string.h>

int main () {
 int len;
 char str[] = "abcdefghc";
 char ch = 'c';
 char *ret;

 ret = strrchr(str, ch);

 printf("String starting from the last %c is : %s", ch, ret);
 // Prints "String starting from the last c is : c"

 return(0);
}

2. Dynamic Memory Management:
- An array is a collection of fixed number of values of a single type. That is,

you need to declare the size of an array before you can use it. Sometimes,
the size of array you declared may be insufficient. To solve this issue, you
can allocate memory manually during run-time. This is known as dynamic
memory allocation in C programming.

- Memory allocated here will never be released /freed automatically by the
system. This is completely under programmers control.

- Memory here can be allocated at any time during the run of a program.
- Dynamic memory allocation allows manual control of memory allocation.
- Malloc:

- Used to allocate space in memory during the execution of the
program.
I.e. Malloc allocates size bytes in the Dynamic Data segment.

- Does not initialize the memory allocated during execution. It also
carries garbage value.

- Returns a pointer to the newly acquired memory, or NULL if there is
not enough available memory.

- Syntax: void *malloc(int num);
- This function allocates an array of num bytes and leave them

uninitialized.
- The size parameter malloc expects is in bytes, which is also the

size of one char.
- For anything besides char, use sizeof to obtain the size of one

element.
- E.g.

int *a = malloc (4 * sizeof (int));

CSCB09 Week 4 Notes

- Calloc:
- Calloc is also like malloc, but calloc initializes the allocated memory

to zero while malloc doesn’t.
- Furthermore, malloc allocates a single block of memory. Whereas,

calloc allocates multiple blocks of memory.
- Syntax: void *calloc(int num, int size);

- Realloc:
- Modifies the allocated memory size by malloc and calloc to new

size.
- If enough space doesn’t exist in memory of current block to extend,

a new block is allocated for the full size of reallocation, then copies
the existing data to new block and then frees the old block.

- Syntax: void *realloc(void *address, int newsize);
- This function re-allocates memory extending it upto newsize.

- Free:
- Memory allocated via malloc is not released automatically. Other

non-malloced memory is freed automatically when it goes out of
scope.

- If we keep calling malloc without releasing any of the memory,
memory will run out.

- Frees the allocated memory by malloc, calloc and realloc and
returns the memory to the system.

- Syntax: void free(*address);
- This function releases a block of memory block specified by

address.
- Dangling Pointers:

- A pointer pointing to a memory location that has been deleted or
freed is called dangling pointer. The pointer does not point to a
valid object. This is sometimes referred to as a premature free.

- The use of dangling pointers can result in a number of different
types of problems, including:

- Unpredictable behavior if the memory is accessed.
- Segmentation faults when the memory is no longer

accessible.
- Potential security risks.

- These types of problems can result when memory is accessed after
it has been freed.

- Memory Leak:
- Memory leak occurs when programmers create a memory in heap

and forget to delete it.
- To avoid memory leaks, memory allocated on heap should always

be freed when no longer needed.

CSCB09 Week 4 Notes

CSCB09 Week 4 Notes

3. Static VS Dynamic Memory Allocation:

Static memory allocation Dynamic memory allocation

Variables get allocated permanently and
allocation is done before program
execution (compile time).

Variables get allocated only if your program
unit gets active and allocation is done during
program execution (run time).

Consists of fixed sizes that cannot
change throughout the program.
I.e. Memory size can’t be modified during
execution.

Infinitely flexible.
I.e. Memory size can be modified during
execution.

Less efficient More efficient

There is no memory reusability. There is memory reusability and memory can
be freed when not required.

Uses a stack for implementing static
allocation.

Uses a heap for implementing dynamic
allocation.

4. Structs:

- A struct is a collection of related data items. It is a collection of variables
(can be of different types) under a single name.

- Structs are used for:
- Serialization of data.
- Passing multiple arguments in and out of functions through a single

argument.
- Data structures such as linked lists, binary trees, and more.

- Syntax:
struct [name] {
Member definition
Member definition
...
Member definition
} [variable name]; // The variable name is optional.

- Example:
struct student {
char firstName[20];
char secondName[20];
int year;
};

CSCB09 Week 4 Notes

- Struct members cannot be initialized with declaration. The reason for this
is that when a datatype is declared, no memory is allocated for it. Memory
is allocated only when variables are created.
E.g. The code below will fail and cause an error.
struct Point
{
 int x = 0;
 int y = 0;
};

- Pointers to structs:
- struct student student1;

…… // code for initializing student1 here
struct student *p;
p = &student1;

How can we access student1’s members?

student1.year = 3;
(*p).year = 3;
p->year = 3;

- Structs and malloc:
- Struct can be used with malloc like any other datatype.
- struct student *s;

s = malloc (sizeof (struct student));
s->year = 3;

- Structs and functions:
- Functions can take structs as parameters and access their

elements.
- void PrintStudent (struct student s) {

printf (“First name: %s\n”, s.firstName);
printf (“Last name: %s\n”, s.lastName);
printf (“Year: %s\n”, s.year);

}
- Pointers and functions:

- If we want to modify the arguments of a function, we need to pass a
pointer. This is because parameters in C are passed by value,
which means that the functions works on the copy, not the original
variable.

Dynamic Memory Allocation

1. Malloc:
- Used to allocate space in memory during the execution of the program.

I.e. Malloc allocates size bytes in the Dynamic Data segment.
- Does not initialize the memory allocated during execution. It also carries

garbage value.
- Returns a pointer to the newly acquired memory, or NULL if there is not

enough available memory.
- Because the function doesn’t know what type of data we’re planning on

storing, it can’t return a pointer to an ordinary type, like int or char. Instead,
it returns a value of type void *. A void * value is a generic pointer, which is
just a memory address.

- Syntax: void *malloc(int num);
- This function allocates an array of num bytes and leave them uninitialized.
- The size parameter malloc expects is in bytes, which is also the size of

one char.
- For anything besides char, use sizeof to obtain the size of one element.
- E.g.

int *a = malloc (4 * sizeof (int));
- Malloc is more efficient than calloc because it doesn’t have to clear the

memory block that it allocates.
2. Calloc:

- Calloc is also like malloc, but calloc initializes the allocated memory to
zero while malloc doesn’t.

- Furthermore, malloc allocates a single block of memory. Whereas, calloc
allocates multiple blocks of memory.

- Syntax: void *calloc(int num, int size);
- Calloc also clears the memory that it allocates.

3. Realloc:
- Modifies the allocated memory size by malloc and calloc to new size.
- If enough space doesn’t exist in memory of current block to extend, a new

block is allocated for the full size of reallocation, then copies the existing
data to new block and then frees the old block.

- Syntax: void *realloc(void *address, int newsize);
- This function re-allocates memory extending it upto newsize.
- Note: Address must point to a memory block obtained by a previous call

of malloc, calloc or realloc.
4. Free:

- Malloc and other memory allocation functions obtain memory blocks from
a storage pool known as a heap. If we call these functions too often, or if
we ask them for large block of memory, it can exhaust the heap which will
cause the functions to return a null pointer.

- Memory allocated via malloc is not released automatically. Other
non-malloced memory is freed automatically when it goes out of scope.

Dynamic Memory Allocation

- If we keep calling malloc without releasing any of the memory, memory
will run out.

- Furthermore, sometimes, there may be a memory leak. A block of
memory that is no longer accessible to a program is said to be garbage. A
program that leaves behind garbage has a memory leak. Unlike some
languages, C does not have a garbage collector. To release unneeded
memory, we can use the free function.

- I.e. Frees the allocated memory by malloc, calloc and realloc and returns
the memory to the system.

- This function releases a block of memory block specified by address.
- Syntax: void free(*address);
- E.g. Consider the code below.

a = malloc(...);
b = malloc(...);
a = b; ← Here, a’s old memory block is no longer accessible, but it has not
been removed. This is an example of a memory leak.

However, if we use the free function, we can reuse that block of memory
later on.
a = malloc(...);
b = malloc(...);
free(a);
a = b;

- Note: The argument to free() must be a pointer that was previously
returned by a memory allocation function. The argument may also be a
null pointer, in which case free() has no effect. However, passing a pointer
to any other object, like an array or a variable, to free() will cause an
undefined behaviour.

- Be careful of dangling pointers when using free().
- A pointer pointing to a memory location that has been deleted or freed is

called dangling pointer.
- These types of problems can result when memory is accessed after it has

been freed.
- When you use free(), you deallocated the memory block that a pointer

points to, but you didn’t change the pointer. If we try to access or modify a
deallocated memory block, then we will get errors.

- Note: When a block of memory is freed, all the pointers that pointed to it
are now dangling pointers.

- The pointer does not point to a valid object. This is sometimes referred to
as a premature free.

Dynamic Memory Allocation

- The use of dangling pointers can result in a number of different types of
problems, including:

- Unpredictable behavior if the memory is accessed.
- Segmentation faults when the memory is no longer accessible.
- Potential security risks.

5. Linked Lists:
- A linked list consists of a chain of structures, called nodes, with each

node containing a pointer to the next node in the chain.
Note: The last node in the linked list contains a null pointer.

- A linked list is more flexible than an array because we can easily insert or
delete nodes.
I.e. Items can be added or removed from the middle of the list.
Furthermore, there is no need to define an initial size.

- However, accessing a specific node in the linked list will take longer if the
node is near the end.
I.e. There is no "random" access - it is impossible to reach the nth item in
the array without first iterating over all items up until that item. This means
we have to start from the beginning of the list and count how many times
we advance in the list until we get to the desired item.
Furthemore, dynamic memory allocation and pointers are required, which
complicates the code and increases the risk of memory leaks and
segment faults.

- Note: (*node).value can be written as node->value. The -> operator
functions is a combination of the * and . operators.

CSCB09 Week 5 Notes

1. Pointer to Pointer:
- Also known as a Double Pointer.
- Syntax: type **var
- Used to store the memory address of pointers.
- Note: When dereferencing a double pointer, we do not get the final object.

To get the final object, we must dereference it twice.
- Note: We can also have triple pointer, quadruple pointers, etc, but we

don’t need to know them for CSCB09.
2. Passing command line arguments to a C program:

- The command line arguments are handled using main function arguments.
- We need the main function to take in 2 arguments:

1. int argc: The number of command line arguments.
2. char *argv[]: A pointer array which points to each argument passed

to the program.
a. argv[0] is the name of the program.
b. The remaining elements of argv contain the arguments

- Note: argv[1] is a pointer to the first command line argument supplied, and
*argv[n] is the last argument.

- If no arguments are supplied, argc is 1, and if you pass one argument then
argc is 2.

- E.g. Consider the C code below:

#include <stdio.h>
int main(int argc, char *argv[]){
 // Prints the value of argc.
 printf("The value of argc is %d\n", argc);
 printf("The value(s) of argv are:");
 // Prints out all the values of argv.
 for (int i = 0; i < argc; i++){
 printf("%s\n", argv[i]);
 }
 return 0;
}

Suppose the function name is test.c. If I successfully compile test.c and do
./test a b c d e f g, then the output is:

CSCB09 Week 5 Notes

The value of argc is 8 // This prints the value of argc, which is 8.
./test // This is argv[0].
a // This is argv[1].
b // This is argv[2].
c // This is argv[3].
d // This is argv[4].
e // This is argv[5].
f // This is argv[6].
g // This is argv[7].

3. Typedef:
- Typedefs allow us to define types with a different name - which can come

in handy when dealing with structs and pointers.
I.e. You can use typedef to give a name to your user defined data types.

- typedef also allows you to define a short-hand.
- E.g. Consider the C codes below:

#include <stdio.h>
typedef struct Example1{
 int x;
 int y;
 int z;
} p1; // We can now use p1 as a data type.
int main(){
 // Using p1 as a data type.
 p1 P1 = {1,2,3};
 printf("P1.x is %d\n", P1.x);
 printf("P1.y is %d\n", P1.y);
 printf("P1.z is %d\n", P1.z);
 // Using Example1 as a data type.
 struct Example1 P2 = {1, 2, 3};
 printf("P2.x is %d\n", P2.x);
 printf("P2.y is %d\n", P2.y);
 printf("P2.z is %d\n", P2.z);
 return 0;
}

CSCB09 Week 5 Notes

- If we use typedef and we use p1 as the data type, then we do not need to
use struct. However, if we are using Example1 as a data type, we still
need to use struct.

- Typedefs is good for large programs, so you don’t have to repeatedly use
structs.

4. Organizing your program:
- C does not offer classes or similar concepts to organize your code.
- Large programs are organized by breaking them down into multiple files.
- Suppose you have these 3 files as part of a project:

1. main.c
#include "list.h"
int main() {
// Some code
}

2. list.c
#include "list.h"
int isEmpty(List *h) {
// Some code
}
void add(List *h, int v) {
// Some code
}
void remove(List *h, int v) {
// Some code
}

3. list.h
struct node {

int value;
struct node * next;

} ;
typedef struct node List;
int isEmpty(List *);
void add(List *, int);
void remove(List *, int)

- We can compile the above functions using gcc main.c list.c –o
myprogram.

- What gcc main.c list.c –o myprogram is doing is:
1. First the pre-processor runs, it looks for example for #include

directives and includes the corresponding .h file.

CSCB09 Week 5 Notes

2. Then the compiler runs on each .c file. It produces machine
code/object code for each .c file and places it in a .o file (main.o,
list.o).

3. Then the linker takes all the object files and combines them into
one executable (called myprogram in our example).

- We have recompile the program each time an edit is made because when
we compile the C code, we are translating the C code to machine level
code that runs directly on your hardware. Therefore, every time you make
an edit a new executable has to be created.

- Note: To run the files together, they must be in the same folder/directory.
- Note: We did not have to compile each time a change was made in a shell

script. This is because the commands inside a shell script are interpreted
by the shell, they are not translated to a machine language program.

- The problem with manually calling gcc is that if you have a lot of files, the
list can grow every long. Furthermore, this recompiles every module, even
if it has not changed.
E.g. gcc file1.c file2.c file3.c file4.c ……… –o myprogram

- We can also compile C code using this method:
gcc –c list.c # this produces list.o
gcc –c main.c # this produces main.o
gcc –o myprogram main.o list.o # produces executable

- The above code only recompiles files that has changed by separating
compilation & linking. However, this is still not efficient.

- We can use Makefiles to solve this problem.
- Makefiles:

- Makefiles are processed by a program called make.
- Contain information about “targets” and “dependencies”.

E.g. myprogram depends on list.o and main.o
E.g. list.o depends on list.c and list.h

- Contain information about “rules”.
E.g. To produce list.o run “gcc –c list.c”

- Make looks at timestamps, and only recompiles a target if one or
more of its dependencies are newer.
I.e. Make allows a programmer to easily keep track of a project by
maintaining current versions of their programs from separate
sources.

- Furthermore, make can automate various tasks for you, not only
compiling proper branch of source code from the project tree, but

CSCB09 Week 5 Notes

helping you automate other tasks, such as cleaning directories,
organizing output, and even debugging.

- Syntax:
<target> : <dependencies>
action
Note: There can be more than 1 dependency.

- Note: Makefile reads from top to bottom. If Makefile finds anything
that was changed, then it will compile that part only. It won’t touch
the stuff that wasn’t changed.

- To run Makefile, use the make command.
- To run clean, do make clean.

- Pre-processor directives:
- Include Header Files:

- #include: Inserts a particular header from another file.
- Define Marcos:

- #define: Substitutes a preprocessor macro.
- Note: A macro is like a constant.

- Conditional Inclusions:
- #ifdef: Returns true if this macro is defined.
- #ifndef: Returns true if this macro is not defined.
- #undef: Undefines a preprocessor macro.
- #endif: Ends preprocessor conditional.
- #error: Prints error message on stderr.

5. Error Handling:
- The return value of library functions tells you if there was an error.

E.g. If malloc returns NULL, then there’s an error.
- Many library functions use a global variable called errno to store more

information on what went wrong.
- errno is declared in errno.h.

I.e. #include <errno.h>
- At process creation time errno is zero. A value of 0 indicates that there is

no error in the program.
- When a library call error occurs, errno is set.
- Some possible values of errno:

- ENOMEM: “Not enough space”
- EDOM: “Domain error”
- EACCESS: “Permission denied”

- However, we need to be careful when we’re using errno.

CSCB09 Week 5 Notes

- Consider the C code below:

if (somecall() == -1) {

printf("somecall() failed\n");

if (errno == ...)

{

 ...

}

}

The problem with this is that printf might change the value of errno if it
encounters an error. If printf works successfully, then it returns a 0. Since
errno looks at the last return statement, it will check the return statement
of printf and see the 0, instead of the -1 from somecall(). Therefore, we
need to save the value of errno before doing any further processing.

- perror():
- Syntax: void perror(char *str)
- perror displays str, then a colon(:), then an English description of

the error as defined in errno.h.
- Protocol:

- check system calls for a return value of -1 or NULL
- call perror() for an error description

6. I/O in C:
- A file represents a sequence of bytes.
- Two main mechanisms for managing file access:

1. File descriptors (low-level):
- Each open file is identified by a small integer.
- Use for pipes, sockets (will see later what those are …)

2. File pointers (regular files):
- You use a pointer to a file structure (FILE *) as handle to a

file.
- The file struct contains a file descriptor and a buffer.
- Use for regular files

- Standard streams:
- All programs automatically have three files open:

- FILE *stdin;
- FILE *stdout;

CSCB09 Week 5 Notes

- FILE *stderr;

 stdio name File descriptor Default Location

Standard input stdin 0 Comes in from keyboard

Standard output stdout 1 Comes out on screen

Standard error stderr 2 Comes out on screen
- Opening Files:

- You can use the fopen function to create a new file or to open an
existing file.

- Syntax:
FILE *fopen(const char *filename, const char *mode);

- filename identifies the file to open.
- mode tells how to open the file:

- "r" for reading
I.e. Opens an existing text file for reading purpose.

- "w" for writing
I.e. Opens a text file for writing. If it does not exist, then a
new file is created. Here your program will start writing
content from the beginning of the file.

- "a" for appending
I.e. Opens a text file for writing in appending mode. If it does
not exist, then a new file is created. Here, your program will
start appending content in the existing file content.

- This returns a pointer to a FILE struct which is the handle to the
file. This pointer will be used in subsequent operations.

- Closing Files:
- Syntax: void fclose(FILE *stream);

- Writing Files:
- fputc

- Syntax: int fputc(int char, FILE *stream);
- Writes the character value of the argument char to the

output stream referenced by stream.
- It returns the written character written on success otherwise

EOF if there is an error.
- fputs

- Syntax: int fputs(const char *str, FILE *stream);

CSCB09 Week 5 Notes

- Writes the string str to the output stream referenced by
stream.

- Returns a non-negative value on success, otherwise EOF is
returned in case of any error.

- fprintf
- Syntax: int fprintf(FILE *stream, const char *format, ...);
- Stream: This is the pointer to a FILE object that identifies the

stream.
- Format: This is the C string that contains the text to be

written to the stream. It can optionally contain embedded
format tags that are replaced by the values specified in
subsequent additional arguments and formatted as
requested.

- Reading Files:
- fgets:

- Syntax: char *fgets(char *s, int size, FILE *stream);
- fgets() reads up to size-1 characters from the input stream

referenced by stream. It copies the read string into the buffer
s, appending a null character to terminate the string.

- s: Pointer to an array of chars where the string read is
copied.

- size: Maximum number of characters to be copied into str
(including the terminating null-character).

- *stream: Pointer to a FILE object that identifies an input
stream.
stdin can be used as argument to read from the standard
input.

- returns: The function returns s.
- It is safe to use because it checks the array bound.
- It keep on reading until new line character encountered or

maximum limit of character array.
- We can get fgets to read from the keyboard by using stdin

for stream. E.g. fgets(s, size, stdin).
- gets:

- Another function to read from keyboard.
- Syntax: char *gets(char *s);
- Reads from keyboard until \n and stores results where buffer

s points to.

CSCB09 Week 5 Notes

- We should never use gets because it does not check the
array bound.

- Binary:
- Block I/O allows you to read and write binary data, i.e. you read

and write byte-for-byte rather than lines of characters.
- Suppose you store the number 1,999,999 as follows:

fprintf(fp, “1999999”);
This takes 7 bytes because each character is a byte. However, by
using block I/O, we can use 3 bytes to store it.

- fread:
- Syntax: size_t fread(void *ptr, size_t size, size_t nmemb,

FILE *stream);
- Reads data from the given stream into the array pointed to,

by ptr.
- Read nmemb * size bytes into memory at ptr.
- Returns number of items read. If this number differs from the

nmemb parameter, then either an error had occurred or the
End Of File was reached.

- Ptr: This is the pointer to a block of memory with a minimum
size of size*nmemb bytes.

- Size: This is the size in bytes of each element to be read.
- Nmemb: This is the number of elements, each one with a

size of size bytes.
- Stream: This is the pointer to a FILE object that specifies an

input stream.
- fwrite:

- Syntax: size_t fwrite(const void *ptr, size_t size, size_t
nmemb, FILE *stream);

- Writes nmemb * size bytes from ptr to the file pointer stream
- Returns number of items written. If this number differs from

the nmemb parameter, it will show an error.
- Ptr: This is the pointer to the array of elements to be written.
- Size: This is the size in bytes of each element to be written.
- Nmemb: This is the number of elements, each one with a

size of size bytes.
- Stream: This is the pointer to a FILE object that specifies an

output stream.

CSCB09 Week 6 Notes

1. Forks:
- The fork system call creates a child process and a duplicate of the

currently running program. Both processes run concurrently and
independently. The child gets a new PID (Process ID) and PPID (Parent
Process ID).

- The fork function creates a new process by duplicating the calling process.
The new process, called the child, is an exact duplicate of the calling
process, referred to as parent, except for the following :

1. The child has its own unique process ID, and this PID does
not match the ID of any existing process group.

2. The child’s parent process ID is the same as the parent’s
process ID.

- The return value from the fork call is different:
1. On success:

- fork() returns 0 to the child.
- fork() returns a positive value, which is the child’s PID, to the

parent.
2. On failure:

- No child is created, fork returns a negative value, usually -1,
to the parent, and errno is set appropriately.

- The fork function takes no arguments.
pid_t fork(void); is the syntax for the fork function.

- You need to use #include <unistd.h>.
- A child process terminates when the program’s main function returns or

the program calls exit.
- In shell, you can use $? to get the exit status of the most recent command.

The exit status is set by the exit function or main’s return.
2. Wait:

- Wait suspends execution of the calling process until one of its children
terminates.

- Syntax: pid_t wait(int *status);
- After calling wait() a process will:

- Block the calling process if all of its children are still running.
- Return immediately with the PID of a terminated child, if there is a

terminated child.
- Return immediately with an error, -1, if it doesn’t have any child

processes.
- Wait returns the pid of the terminated child or -1 on error.
- status encodes the exit status of the child and how a child exited

(normally or killed by signal).
- There are macros to process exit status:

1. WIFEXITED tells you if child terminated normally
2. WEXITSTATUS gives you the exit status

- A child becomes a zombie when it terminates, but its parent process is not
waiting for it. The child’s exit code is kept around as a zombie until parent

CSCB09 Week 6 Notes

collects its exit code through wait or until parent terminates. Shows up as
Z in ps.

- A child becomes an orphan if the parent process terminates before the
child.

- Orphans get adopted by the init process.
- init is the first process started during booting. It’s the root of the process

hierarchy. init has a PID of 1 so the PPID of orphans is 1.
- Waitpid is used if a process wants to wait for a particular child rather than

any child or if a process does not want to block when no child has
terminated.

- Syntax: pid_t waitpid(pid_t pid, int *status, int options);
- First parameter specifies PID of child to wait for.
- If pid is -1 then it means any arbitrarily child. Here waitpid() work same as

wait() work.
- If options is 0, waitpid blocks, just like wait.
- If options is WNOHANG, it immediately returns 0 instead of blocking when

no terminated child.
3. Exec:

- The exec family of functions replaces the current process with a new
process. The new program starts executing from the beginning.

- On success, exec never returns, on failure, exec returns -1.
- The new process inherits from calling process:

- PID and PPID, UID, GID
- Controlling terminal
- CWD, resource limits
- Pending signals

- Exec is not one specific function, but a family of functions.
1. execvp:

Syntax: int execvp (const char *file, char *const argv[]);
file: Points to the file name associated with the file being executed.
argv: Is a null terminated array of character pointers.

2. execlp:
Syntax: int execlp(const char *file, const char *arg,.../* (char *)
NULL */);
file: The file name associated with the file being executed.
const char *arg and ellipses: Describes a list of one or more
pointers to null-terminated strings that represent the argument list
available to the executed program.

3. execv:
Syntax: int execv(const char *path, char *const argv[]);
path: A pointer that points to the path of the file being executed.
argv[]: is a null terminated array of character pointers.

CSCB09 Week 6 Notes

4. execl:
Syntax: int execl(const char *path, const char *arg,.../* (char *)
NULL */);
file: The file name associated with the file being executed.
const char *arg and ellipses: Describes a list of one or more
pointers to null-terminated strings that represent the argument list
available to the executed program.

- First parameter: name of executable; then commandline parameters for
executable; these are passed as argv[0], argv[1], …, to the main program
of the executable.

- execl and execv differ from each other only in how the arguments for the
new program are passed.

- execlp and execvp differ from execl and execv only in that you don’t have
to specify full path to new program.

4. Difference Between Fork and Exec:
- Fork starts a new process which is a copy of the one that calls it while

exec replaces the current process with a different one.
I.e. Fork creates a duplicate of the current process while exec replaces the
current process with a different one.

5. How a shell runs commands:
- When a command is typed, shell forks and then execs the typed

command.
6. Processes and File Descriptors:

- File descriptors are handles to open files.
- They belong to processes not programs.
- They are a process’s link to the outside world.

7. Initializing Unix:
- Use the top or ps –aux command to see what’s running.
- The only way to create a new process is to duplicate an existing process.

Therefore the ancestor of all processes is init with pid = 1.
- The only way to run a program is with exec.

CSCB09 Week 8 Notes

1. Parallel programs:
- Hardware is not getting that much faster anymore. Therefore, we can use

more hardware to solve a problem.
I.e. Multiple processors/cores and multiple machines.

- Processes often need to communicate. This means that processes of a
parallel program need to exchange data and/or synchronize. However, if
you use fork, the parent and the child cannot use the same variables as
each process has a separate copy of each variable.

- We can use pipes to solve this problem.
2. Pipes:

- Pipes are a one-way (half-duplex) communication channel.
- Pipes are a communication medium between two or more related or

interrelated processes.
- It can be either within one process or a communication between the child

and the parent processes.
- Communication can also be multi-level such as communication between

the parent, the child and the grand-child, etc.
- Pipes are buffers managed by the OS.
- Processes use low-level file descriptors for pipe operations.
- Communication is achieved by one process writing into the pipe and other

reading from the pipe. To achieve the pipe system call, create two files,
one to write into the file and another to read from the file.

3. I/O mechanisms in C:
- So far we have used file pointers (regular files).

I.e. FILE *file
- For pipes, we need to use file descriptors (fd), which are low level.
- A file descriptor is an integer that uniquely identifies an open file in a

computer’s operating system.
- When a process makes a successful request to open a file, the kernel

returns a file descriptor which points to an entry in the kernel's global file
table. The file table entry contains information such as the inode of the file,
byte offset, and the access restrictions for that data stream (read-only,
write-only, etc).

- A file descriptor table (fd table) is a collection of file descriptors in which
elements are pointers to the file table’s entries.

- A unique file descriptor table is provided in the operating system for each
process.

- Each process’s fd table has all the open files of that process.
- The global fd table has all the open files system-wide.

CSCB09 Week 8 Notes

- The fd table is preserved if you exec.
- If you fork, a child gets a copy of parent’s fd table, so it will have same

files open. Both the parent’s and the child’s fd will point to same entry in
the global file table, so they see the same offset.

- Note: File descriptors created after calling fork are not shared.
- All programs automatically have three files open:

- FILE *stdin
- FILE *stdout
- FILE *stderr;

- These are known as the Standard File Descriptors.
 Stdio name File descriptor

Standard input stdin 0 (STDIN_FILENO)

Standard output stdout 1 (STDOUT_FILENO)

Standard error stderr 2 (STDERR_FILENO)
- A useful system call to get the corresponding fd for a FILE object is:

int fileno(FILE *stream);
- The operations for file descriptors are open, close, read and write.
- Open:

- Used to open the file for reading, writing or both. This returns a file
descriptor upon success or -1 upon failure.

- Syntax: int open(const char *pathname, int flags);
- Pathname is the path to the file that you want to use. Use an

absolute path that begins with “/”, if you are not working in same
directory as the file. Use a relative path if you are working in same
directory as the file.

- Flags:
- O_RDONLY: Opens the file for read-only.
- O_WRONLY: Opens the file for write-only.
- O_RDWR: Opens the file for both reading and writing.

CSCB09 Week 8 Notes

- Note: To use the open function, you must include the following:
- #include<sys/types.h>
- #include<sys/stat.h>
- #include <fcntl.h>

- Read:
- This reads count bytes of input into the memory area indicted by

buf from the file indicated by fd. This returns the number of bytes
read on success, 0 on reaching the end of file and -1 on error.

- Syntax: ssize_t read(int fd, void *buf, size_t count);
- buf:

- The buffer (Memory Area) that stores the data when you
read it.

- buf needs to point to a valid memory location with size not
smaller than count.

- count:
- This is the length of the buffer.

I.e. This is the number of bytes requested to be read.
- Note: Sometimes, the number of bytes requested to be read

is not the same as the actual number of bytes read.
- Write:

- This writes count bytes from buf to the file indicated by fd. If cnt is
zero, write simply returns 0 without attempting any other action.
Furthermore, write will overwrite the contents of the file, if there are
any. This returns the number of bytes written on success and -1 on
error.

- Syntax: ssize_t write(int fd, const void *buf, size_t count);
- buf:

- The buffer that stores the data being written from.
- buf needs to point to a valid memory location with size not

smaller than count.
- count:

- The length of the buffer.
I.e. This is the number of bytes requested to be written.

- Note: Sometimes, the number of bytes requested to be
written is not the same as the actual number of bytes written.

- Close:
- Closes the file pointed by fd.
- This returns 0 on success and -1 on failure.
- Syntax: int close(int fd);

4. Programming With Pipes:
- You need to use #include<unistd.h>.
- Syntax: int pipe(int pipefd[2]);
- You pass a pointer to two integers (i.e. an array or a malloc of two ints)

and pipe fills it with two newly opened FDs.

CSCB09 Week 8 Notes

I.e. pipe creates an OS internal system buffer and two file descriptors, one
for reading and one for writing.

- pipefd[0] is used for reading.
- pipefd[1] is used for writing.
- Whatever is written into pipefd[1] can be read from pipefd[0].
- Returns 0 on success and -1 on error. To know the cause of failure, check

with errno or perror.
- Read blocks until data is available in the pipe. If the writing end is closed,

read detects EOF and returns 0.
- All open pipes (and other FDs) are closed when a process exits.
- In general, each process will read or write a pipe (not both). You should

close the end you are not using.
I.e. Before reading: close pipefd[1].
 Before writing: close pipefd[0].

- If you don’t close the end you are not using, your code might hang.
- E.g.

if (fork == 0){
 write(p[1], msg, msgsize);
}else{
 while((nbytes=read(p[0], buf, bufsize)) > 0){
 write(STDOUT_FILENO, buf, nbytes);
 }
}
This code will hang because parent wants to read until EOF and write.
However, because p[1] wasn’t closed, read is always expecting more
data, so it blocks.
if (fork == 0){
 write(p[1], msg, msgsize);
}else{
 close(p[1]);
 while((nbytes=read(p[0], buf, bufsize)) > 0){
 write(STDOUT_FILENO, buf, nbytes);
 }
}
Because we closed p[1] before reading, now the parent won’t hang.

CSCB09 Week 8 Notes

-
- If you try to write to a pipe and no one has reading end open, you get a

signal (SIGPIPE) that will terminate program.
- If you write to a pipe and the buffer is full, write blocks until space frees up.
- If you read from a pipe and nobody has a writing end open, read returns

EOF.
- If you read from a pipe and there is no data read blocks.

CSCB09 Week 8 Notes

5. Dup2:
- Syntax: int dup2(oldfd, newfd);
- dup2 duplicates the file descriptor of oldfd into newfd.
- If the descriptor newfd was previously open, it is silently closed before

being reused.
- If oldfd is not a valid file descriptor, then the call fails, and newfd is not

closed.
- If oldfd is a valid file descriptor, and newfd has the same value as oldfd,

then dup2() does nothing, and returns newfd.
- Note: You must include #include<unistd.h> to use dup2.
- On success, dup2 returns a new file descriptor, newfd, that has the

following in common with the original:
- Same open file or pipe.
- Same file pointer (both file descriptors share one file pointer).
- Same access mode (read, write, or read/write).

- On failure, dup2 returns -1 and errno is set accordingly.
- dup2 is used to redirect input and output. It works similar to “>” and “<”

from Unix commands.
- E.g.

CSCB09 Week 8 Notes

- E.g.

CSCB09 Week 9 Notes

1. Signals:
- A signal is a software generated interrupt that is sent to a process by the

OS because the user pressed ctrl-c or another process wants to tell
something to this process.

- A form of Inter-Process Communication (IPC).
- Unexpected/unpredictable asynchronous events, called interrupts, can

happen at any time. Some interrupts are:
- Floating point error
- Death of a child
- Interval timer expired (alarm clock)
- control-C (termination request)
- control-Z (suspend request)

- When the kernel recognizes an event, it sends a signal to the process.
- Normal processes may send signals, too.
- Signals are generated by:

- Machine interrupts
- The program itself
- Other programs
- The user (You can send signals from the shell)

- Signals do not transfer data between processes.
- <sys/signal.h> lists the signal types.
- Use the command man 7 signal to get some description of various

signals.
- Syntax: void (*signal(int sig, void (*func)(int)))(int)
- Sig: This is the signal number to which a handling function is set.

I have included a list of useful signals at the end.
- Func: This is a pointer to a function. This can be a function defined by the

programmer or one of the following predefined functions:
- SIG_IGN
- SIG_DFL

 Note: Both are defined under signal handlers.
- You need to use #include <signal.h>

2. What Signals Are Used For:
- When a program forks into 2 or more processes, they rarely execute

independently. The processes usually require some form of
synchronization which is often handled by signals.

3. Types of Signals:
- SIGINT: Terminates the process by pressing CTRL-C (^C)
- SIGSTOP: Suspends the process by pressing CTRL-Z (^Z)
- SIGSEGV: Segmentation fault, usually from bad pointer usage
- SIGPIPE: Writing to a pipe whose read end is closed

4. Signal Handlers:
- When a C program receives a signal, control is immediately passed to a

function called a signal handler.
- SIG_IGN will ignore the signal.

CSCB09 Week 9 Notes

- SIG_DFL will take the default action, which is usually to terminate the
process. Every signal has a default action associated with it. The default
action for a signal is the action that a script or program performs when it
receives a signal.

- The signal handler can execute some C statements and exit in 3 different
ways:

- Return control to the place in the program which was executing
when the signal occurred.

- Return control to some other point in the program.
- Terminate the program by calling exit.

5. How a Process can deal with the Signal:
- Take a specified user-defined action.
- Ignore the signal altogether and carry on processing.
- Take the default action, which is usually to terminate the process.

6. Signal table:
- For each process, Unix maintains a table of actions that should be

performed for each kind of signal (see below).
- The default action can be changed for most signal types using the

sigaction() function. The exceptions are SIGKILL and SIGSTOP.
Signal Default Action Comment

SIGINT Terminate Interrupt from keyboard

SIGSEGV Terminate/Dump core Invalid memory reference

SIGKILL Terminate (Cannot ignore) Kill

SIGCHLD Ignore Child stopped or terminated

SIGSTOP Stop (cannot ignore) Stop process

SIGCONT Resume execution at the point where
the process was stopped, after first
handling any pending unblocked
signals

Continue if stopped

7. Sigaction:
- The sigaction system call is used to change the action taken by a process

on receipt of a specific signal.
- Syntax: int sigaction(int sig, const struct sigaction *act, struct

sigaction *oldact);
- sig specifies the signal and can be any valid signal except SIGKILL and

SIGSTOP.
- If act is non-null, the new action for signal sig is installed from act.
- If oldact is non-null, the previous action is saved in oldact.

CSCB09 Week 9 Notes

- The sigaction structure is defined as something like:
struct sigaction {

void (*sa_handler)(int);
// SIG_DFL, SIG_IGN, or pointer to function.
// Pointer to a signal-catching function or one of the
 macros SIG_IGN or SIG_DFL.

sigset_t sa_mask;
// Signals to block during handler.
// Additional set of signals to be blocked during
 execution of a signal-catching function.

int sa_flags;
// flags and options, SA_RESTART, SA_RESETHAND
// Special flags to affect the behavior of signals.
};

- Note: There are more extensions for the struct.
- If a signal is received when a signal handler is running, the first signal

handler is suspended and the newly invoked handler runs, then the first
handler is resumed.

- sa_mask can be used to block out signals while one handler is running.
8. Blocking Signals:

- Signals can arrive at any time.
- To temporarily prevent a signal from being delivered, we block it.
- The signal is held until the process unblocks the signal, then it is

delivered.
- When a process ignores a signal, it is thrown away.
- Blocked signals are held until they are unblocked, this is different than

being ignored.
9. Signal Set:

- Signal sets are used to store the set of signals that are currently blocked
or unblocked.

- Operations on signal sets:
- int sigemptyset(sigset_t *set);
- int sigfillset(sigset_t *set);
- int sigaddset(sigset_t *set, int signo);
- int sigdelset(sigset_t *set, int signo);
- int sigismember(const sigset_t *set, int signo);

- Example:
- sigset_t mask;

sigfillset(&mask) // Blocks every signal during handler
sigemptyset(&mask) // Don’t block any signals during the handler
sigaddset(&mask, SIGQUIT) // Block SIGQUIT
sigdelset(&mask, SIGALRM) // Unblock SIGALRM
sigismember(&mask, SIGHUP) // Check if SIGHUP is waiting

CSCB09 Week 9 Notes

10.Sigprocmask:
- Used to fetch and/or change the signal mask of the calling thread.

I.e. It examines and changes blocked signals.
- Syntax: int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
- how indicates how the signal will be modified:

- SIG_BLOCK: Add to those currently blocked
- SIG_UNBLOCK: Delete from those currently blocked
- SIG_SETMASK: Set the collection of signals being blocked

- set points to the set of signals to be used for modifying the mask.
- oset on return holds the set of signals that were blocked before the call.

11.Sending a signal:
- You can use the kill command to send a signal to a process.
- Syntax: kill [-signal] pid [pid]…
- If you don't specify which signal to send, by default the TERM signal is

sent, which terminates the process.
- The signal can be specified by the number or the name without the SIG.
- E.g.

- kill -QUIT 8883
- kill -STOP 78911
- kill -9 76433 This is the same as kill -KILL 76433 because

9 == KILL.
12.Signalling between processes:

- One process can send a signal to another process using the kill function.
- Note: The kill function is not the same as the kill command.
- Syntax: int kill(pid_t pid, int sig);
- pid: id of destination process
- signal: the type of signal to send
- Return value: 0 if signal was sent successfully and -1 if the signal was not

sent successfully.
- The kill function sends a signal specified by sig to a process or a group of

processes specified by pid.
- Need to use the following:

- #include <sys/types.h>
- #include <signal.h>

- Signalling between processes can be used for many purposes:
- Kill errant processes
- Temporarily suspend execution of a process
- Make a process aware of the passage of time
- Synchronize the actions of processes.

13.Timer signals:
- Three interval timers are maintained for each process:

- SIGALRM: Real-time alarm, like a stopwatch
- SIGVTALRM: Virtual-time alarm, measuring CPU time
- SIGPROF: Used for profilers

CSCB09 Week 9 Notes

- Useful functions to set and get timer info:
- sleep(): Suspends the calling process
- usleep(): Like sleep() but at a finer granularity
- alarm(): Sets SIGALRM
- pause(): Suspends the process until next signal arrives
- setitimer()
- getitimer()

- sleep() and usleep() are interruptible by other signals.
14.Limitations:

- Signals don’t contain data, all you know is the signal type.
- Multiple signals:

- If repeated signals are sent before a process has a chance to
check for its signals, the effect is the same as being sent only once
(second signal is lost).

- If multiple (different) signals are sent, all will be received when the
process has a chance to check.

- Signals are usually used to indicate conditions and synchronization.

CSCB09 Week 9 Notes

15. List of Signals:
- Note: You can use kill -l to get this.

Number Signal What it does

1 SIGHUP Used to report the termination of the controlling process on a
terminal to jobs associated with that session. This termination
effectively disconnects all processes in the session from the
controlling terminal. (Ctrl + D)

2 SIGINT Issued if the user sends an interrupt signal (Ctrl + C)

3 SIGQUIT Issued if the user sends a quit signal (Ctrl + \)

8 SIGFPE Reports a fatal arithmetic error. Although the name is derived from
“floating-point exception”, this signal actually covers all arithmetic
errors, including division by zero and overflow.

9 SIGKILL If a process gets this signal it must quit immediately and will not
perform any clean-up operations. Cannot be blocked or ignored.

11 SIGSEGV Generated when a program tries to read or write outside the
memory that is allocated for it, or to write memory that can only be
read.

13 SIGPIPE Writing to a pipe whose read end is closed.

14 SIGALRM Alarm clock signal (Used for timers)

15 SIGTERM Terminates the process. (Sent by the kill command by default)

17 SIGCHLD Sent to a parent process whenever one of its child processes
terminates or stops.

18 SIGCONT Continues a process.

19 SIGSTOP Stops the process. (Ctrl + Z) It cannot be handled, ignored, or
blocked.

26 SIGVTALRM Virtual-time alarm, measuring CPU time.

27 SIGPROF Indicates expiration of a timer that measures both CPU time used
by the current process, and CPU time expended on behalf of the
process by the system. This is used to implement code profiling
facilities.

CSCB09 Week 10 Notes

1. IP Address:
- Every computer on the Internet has an internet address, called its IP

(Internet Protocol) address.
- An IP address is 4 numbers separated by dots.

2. Protocols:
- Computers use several layers of general protocols to communicate.
- A network protocol is a set of established rules that dictates how to

format, transmit and receive data so computer network devices can
communicate regardless of the differences in their underlying
infrastructures, designs or standards.

- For example, HTTP is a high-level protocol specific to the web.
3. TCP/IP:

- TCP stands for Transmission Control Protocol.
- TCP/IP (Transmission Control Protocol/Internet Protocol) is a suite of

communication protocols used to interconnect network devices on the
internet. It can also be used as a communications protocol in a private
network, such as an intranet or an extranet.

- TCP/IP specifies how data is exchanged over the internet by providing
end-to-end communications that identify how it should be broken into
packets, addressed, transmitted, routed and received at the destination.

- TCP/IP requires little central management, and it is designed to make
networks reliable, with the ability to recover automatically from the failure
of any device on the network.
I.e. TCP/IP tells the computer how to package up the data.

- The TCP defines how applications can create channels of communication

across a network. It also manages how data is assembled into smaller
packets before they are then transmitted over the internet and
reassembled in the right order at the destination address.

- A packet is the unit of data that is routed between an origin and a
destination on any packet-switched network, including the internet.

- The IP defines how to address and route each packet to make sure it
reaches the right destination. Each gateway computer on the network
checks this IP address to determine where to forward the message.

- E.g. When any file is sent from one place to another on the internet, the
TCP layer divides the file into chunks of an efficient size for routing. Each

CSCB09 Week 10 Notes

of these packets is separately numbered and includes the internet address
of the destination. The individual packets for a given file may travel
different routes through the internet. When they have all arrived, they are
reassembled into the original file by the TCP layer at the receiving end.

- TCP/IP uses the client/server model of communication.
- In the Client-Server model of communication, a client process wants to

talk to a server process. First, the client must find server by doing a DNS
lookup. Then, the client must find process on server by using ports. Finally
the client must establish a connection so two processes can talk.

- Advantages of TCP/IP include:
- It is non-proprietary and, as a result, is not controlled by any single

company. Therefore, the internet protocol suite can be modified
easily.

- It is compatible with all operating systems, so it can communicate
with any other system.

- The internet protocol suite is also compatible with all types of
computer hardware and networks.

- Sometimes a packet might not arrive, because of traffic overload or bit
corruption. In that case, the receiver asks for missing packets to be resent.
While we want to send data as fast as possible, sending data too fast
wastes resources. We can use TCP Congestion Control to solve this
problem.

4. TCP Congestion Control:
- Network congestion may occur when a sender overflows the network with

too many packets. At the time of congestion, the network cannot handle
this traffic properly.

- What the TCP Congestion Control does is that it creates a window that
allows some sent packets to be ack’d. As more packets are ack’d, it
increases the capacity of the window. If a packet loss is discovered, it
decreases the capacity of the window.

- Ack is the name of a signal that data has been received successfully.
5. Introduction to Sockets:

- Sockets allow communication between two different processes on the
same or different machines using standard Unix file descriptors.

- Similar to pipes, except sockets can be used between processes on
different machines.

- Sockets are built on top of the TCP layer.
- A Unix Socket is used in a client-server application framework.
- A server is a process that performs some functions on request from a

client.
6. Types of Sockets:

- There are two main categories of sockets:
1. UNIX domain: Both processes are on the same machine.
2. INET domain: The processes are on different machines.

CSCB09 Week 10 Notes

- There are three main types of sockets:
1. SOCK_STREAM (Stream Sockets): Delivery in a networked

environment is guaranteed. If you send through the stream socket
three items "A, B, C", they will arrive in the same order, "A, B, C".
These sockets use TCP for data transmission. If delivery is
impossible, the sender receives an error indicator. Data records do
not have any boundaries.

2. SOCK_DGRAM (Datagram Sockets): Delivery in a networked
environment is not guaranteed. They use UDP (User Datagram
Protocol) and are connectionless because they don't need to have
an open connection. Instead, you build a packet with the
destination information and send it out.

3. SOCK_RAW (Raw Sockets): These provide users access to the
underlying communication protocols, which support socket
abstractions. These sockets are normally datagram oriented,
though their exact characteristics are dependent on the interface
provided by the protocol. Raw sockets are not intended for the
general user; they have been provided mainly for those interested
in developing new communication protocols, or for gaining access
to some of the more cryptic facilities of an existing protocol.

7. Addresses and Ports:
- A socket pair is the two endpoints of the connection.
- An endpoint is identified by an IP address and a port.
- IPv4 (IP version 4) addresses are four 8-bit numbers.
- A port is an endpoint for communication.
- Ports are identified on a server for each protocol and address, known as

the port number.
- We use ports because multiple processes can communicate with a single

machine, so we need another identifier.
- The port assignments to network services can be found using the

command cat /etc/services.
- Well-known ports are from 0 - 1023.
- E.g.:

- 80 = http
- 22 = ssh
- 23 = telnet

- Registered ports are from 1024 - 49151.
- E.g.:

- 2709 = supermon
- 26000 = quake
- 3724 = world of warcraft

- Dynamic (private) ports are from 49152 - 65535.

CSCB09 Week 10 Notes

8. Server Side:
- Need to use #include <sys/socket.h>
- Steps:

1. Create a socket: socket().
2. Assign a name to a socket: bind().
3. Establish a queue for connections: listen().
4. Get a connection from the queue: accept().

- Syntax for socket():
- This creates a socket. It returns a socket descriptor, an integer (like

a file-handle). If the return number is -1, then there was an error.
- int socket(family, type, protocol)
- family: Specifies protocol family:

- PF_INET: IPv4
- PF_LOCAL: Unix domain

- type: The communication type.
- SOCK_STREAM
- SOCK_DGRAM
- SOCK_RAW

- protocol: Set to 0 except for RAW sockets.
- Syntax for bind():

- The bind function assigns a local protocol address to a socket. This
function is called by TCP server only. This returns 0 if it
successfully binds to the address, otherwise it returns -1 on error.

- int bind(int sockfd, const struct sockaddr *servaddr, socklen_t
addrlen);

- Sockfd: The number returned by socket().
- struct sockaddr_in {

 short int sin_family;
 unsigned short int sin_port;
 struct in_addr sin_addr;
 unsigned char sin_zero[8];
};

Attribute Values Description

sin_family PF_INET Represents the protocol family.

sin_port Service Port A 16-bit port number in Network Byte Order.

sin_addr IP Address A 32-bit IP address in Network Byte Order.
Note: sin_addr can be set to INADDR_ANY
to communicate on any network interface.

sin_zero[8] Filling You just set this value to NULL as this is not
being used.

CSCB09 Week 10 Notes

- Servaddr: A pointer to struct sockaddr that contains the local IP
address and port.

- Addrlen should be set to sizeof(struct sockaddr).
- Syntax for listen():

- After calling listen, a socket is ready to accept connections.
- It prepares a queue in the kernel where partially completed

connections wait to be accepted.
- int listen(int sockfd, int backlog)
- Sockfd: The number returned by socket().
- Backlog: The maximum number of partially completed connections

that the kernel should queue.
- Syntax for accept():

- It blocks, waiting for a connection from the queue, creates a new
connected socket, and returns a new descriptor, which refers to the
TCP connection with the client.

- At this point, connection is established between client and server,
and they are ready to transfer data.

- Reads and writes on the connection will use the socket returned by
accept.

- int accept(int sockfd, struct sockaddr *cliaddr, socklen_t
*addrlen);

- Sockfd: Is the listening socket.
- Cliaddr: A pointer to struct sockaddr that contains client IP address

and port.
- Addrlen should be set to sizeof(struct sockaddr).

9. Client Side:
- Need to use #include <sys/socket.h>
- Steps:

1. Create a socket: socket(). This is the same as the server side.
2. Initiate a connection: connect().

- Syntax for connect():
- The connect() system call connects the socket referred to by the file

descriptor sockfd to the address specified by servaddr. The server’s
address and port is specified in servaddr.

- The kernel will choose a dynamic port and source IP address.
- Returns 0 on success and -1 on failure setting errno.

CSCB09 Week 10 Notes

- Initiates the three-way handshake (The picture below).

- int connect(int sockfd, const struct sockaddr *servaddr,

socklen_t addrlen);
- Sockfd: The number returned by socket().
- Servaddr: A pointer to struct sockaddr that contains destination IP

address and port.
- Addrlen should be set it to sizeof(struct sockaddr).

CSCB09 Week 10 Notes

10.Byte order:
- Unfortunately, not all computers store the bytes that comprise a multibyte

value in the same order. Consider a 16-bit internet that is made up of 2
bytes. There are two ways to store this value:
1. Little Endian: In this scheme, a low-order byte is stored on the

starting address (A) and a high-order byte is stored on the next
address (A + 1).
I.e. Little Endian byte ordering places the least significant byte first.

2. Big Endian: In this scheme, a high-order byte is stored on the
starting address (A) and a low-order byte is stored on the next
address (A + 1).
I.e. Big Endian byte ordering places the most significant byte first.

- Intel is little-endian, and Sparc is big-endian.
- To allow machines with different byte order conventions communicate with

each other, we convert numbers to network byte order (big-endian)
before we send them.

- There are functions provided to do this:
Function Description

unsigned long htonl(unsigned long) This function converts 32-bit quantities from
host byte order to network byte order.

unsigned short htons(unsigned short) This function converts 16-bit quantities from
host byte order to network byte order.

unsigned long ntohl(unsigned long) This function converts 32-bit quantities from
network byte order to host byte order.

unsigned short ntohs(unsigned short) This function converts 16-bit quantities from
network byte order to host byte order.

CSCB09 Week 10 Notes

11.Sending and Receiving Data:
- Read and write calls work on sockets, but sometimes we want more

control.
- We can use the send function and the receive function instead.
- Send():

- The send function is used to send data over stream sockets or
connected datagram sockets.

- Syntax: ssize_t send(int fd, const void *buf, size_t len, int
flags);

- This call returns the number of bytes sent out, otherwise it will
return -1 on error.

- fd is the socket descriptor returned by the socket function.
- buf is a pointer to the data you want to send.
- len is the length of the data you want to send (in bytes).
- flags:

- If flags==0, then send() works like write.
- If flags is MSG_OOB, then it sends out-of-band data on

sockets that support out-of-band communications. The
significance and semantics of out-of-band data are
protocol-specific.

- If flags is MSG_DONTROUTE, then it doesn't include routing
information in the message.

- If flags is MSG_DONTWAIT, then it enables a non-blocking
operation.

- Recv():
- The recv function is used to receive data over stream sockets or

connected datagram sockets.
- Syntax: ssize_t recv(int fd, void *buf, size_t len, int flags);
- This call returns the number of bytes read into the buffer, otherwise

it will return -1 on error.
- fd is the socket descriptor returned by the socket function.
- buf is the buffer to read the information into.
- len is the maximum length of the buffer.
- flags:

- If flags==0, then recv() works like read.
- If flags is MSG_OOB, then it requests out-of-band data. The

significance and semantics of out-of-band data are
protocol-specific.

- If flags is MSG_WAITALL, then it requests that the function
block until the full amount of data can be returned.

- If flags is MSG_PEEK, then it peeks at an incoming
message. The data is treated as unread and the next recv()
or similar function shall still return this data.

CSCB09 Week 10 Notes

12.Close:
- The close function is used to close the communication between the client

and the server. When finished using a socket, the socket should be
closed.

- Syntax: int close(int socketfd)
- Socketfd is the file descriptor of the socket being closed.
- This returns 0 on success, otherwise it returns -1 on error.
- Closing a socket:

- Closes a connection for SOCK_STREAM.
- Frees up the port used by the socket.

13.PF Vs AF:
- PF stands for Protocol Family. It refers to anything in the protocol,

usually sockets and ports.
- AF stands for Address Family. It refers to addresses from the internet, IP

addresses specifically.

Week 11 Notes

1. I/O Multiplexing:
- I/O multiplexing is a process which is used to monitor multiple file

descriptors and choose among them which fd is ready for reading or
writing to a socket.

- Consider this problem: A server is ready to read with its clients. However,
the server can only read from 1 client at a time. If the first client is gone,
then all the other clients are blocked.
I.e.

- Note: If you are using sockets, read and accept will both block until the

client is done.
- When reading from multiple sources, blocking on one of the sources could

be bad. A possible and simple solution would be to create one process for
every client. However, a downside to this is that if there a lot of clients,
then a lot of processes have to be made, which is inefficient. I/O
multiplexing can solve this problem.

- There are normally two distinct phases for an input operation:
1. Waiting for the data to be ready. This involves waiting for data to

arrive on the network. When the packet arrives, it is copied into a
buffer within the kernel.

2. Copying the data from the kernel to the process. This means
copying the (ready) data from the kernel's buffer into our application
buffer.

Week 11 Notes

2. Blocking I/O Model:
- The most prevalent model for I/O is the blocking I/O model.
- By default, all sockets are blocking.

3. Nonblocking I/O Model:

- When a socket is set to be non-blocking, we are telling the kernel "When
an I/O operation that I requested cannot be completed without putting the
process to sleep, do not put the process to sleep, but return an error
instead".

Week 11 Notes

4. Signal Driven I/O Model:
- The signal driven I/O Model tells the kernel to notify us with the SIGIO

signal when the descriptor is ready.
- We first enable the socket for signal-driven I/O and install a signal handler

using the sigaction system call. The return from this system call is
immediate and our process continues; it is not blocked.

- When the datagram is ready to be read, the SIGIO signal is generated for
our process.

- The advantage to this model is that we are not blocked while waiting for
the datagram to arrive. The main loop can continue executing and just
wait to be notified by the signal handler that either the data is ready to
process or the datagram is ready to be read.

5. Asynchronous I/O Model:

- This works by telling the kernel to start the operation and to notify us when
the entire operation,including the copy of the data from the kernel to our
buffer, is complete.

- The main difference between this model and the signal-driven I/O model is
that with signal-driven I/O, the kernel tells us when an I/O operation can
be initiated, but with asynchronous I/O, the kernel tells us when an I/O
operation is complete.

- We call aio_read and pass the kernel the following:
- A file descriptor, file offset, buffer pointer and buffer size.
- How to notify us when the entire operation is complete.

- This system call returns immediately and our process is not blocked while
waiting for the I/O to complete.

Week 11 Notes

Week 11 Notes

6. I/O Multiplexing Model:
- With I/O multiplexing, we call select or poll and block in one of these two

system calls, instead of blocking in the actual I/O system call.
- We block in a call to select, waiting for the datagram socket to be

readable. When select returns that the socket is readable, we then call
read to copy the datagram into our application buffer.

- Disadvantage: Using select requires two system calls, select and read,
instead of one.

- Advantage: We can wait for more than one file descriptor to be ready.

7. Select:

- Select allows you to monitor several FDs without using fork or tight
looping.

- Select allows a process to instruct the kernel what descriptors we are
interested in (for reading, writing, or an exception condition) and how long
to wait.

- Sometimes a program needs to accept input on multiple input channels
whenever input arrives. E.g. A program that acts as a server to several
other processes via pipes or sockets. You cannot normally use read for
this purpose, because read blocks the program until input is available on
one particular file descriptor. A solution is to use select. Select blocks the
program until input or output is ready on a specified set of file descriptors,
or until a timer expires, whichever comes first.

- Select blocks until at least one of these FDs has an action.
- The FDs that remain in the FD sets are the ones on which one can read

and write without blocking.
- Syntax: int select(int maxfdp1, fd_set *readset, fd_set *writeset,

fd_set *exceptset, const struct timeval *timeout);

Week 11 Notes

- The fd_set data type represents file descriptor sets for the select function.
It is actually a bit array.

- maxfdp1 specifies the number of descriptors to test. Its value is the
maximum descriptor to be tested plus one.

- The reason the maxfdp1 argument exists, along with the burden of
calculating its value, is for efficiency. Although each fd_set has room for
many descriptors, typically 1024, this is much more than the number used
by a typical process. The kernel gains efficiency by not copying unneeded
portions of the descriptor set between the process and the kernel, and by
not testing bits that are always 0.

- A call to select returns when one of the file descriptors in one of the sets is
ready for I/O.

- Select returns the positive number of ready descriptors on success, 0 if we
timed out, and -1 on error.

- Select is ready to read when:
- There is data in the receive buffer to be read.
- End-of-file state on file descriptor.
- The socket is a listening socket and there is a connection pending.
- A socket error is pending and you need to catch it.

- Select is ready to write when:
- There is space available in the write buffer.
- A socket error is pending and you need to catch it.

- Select is ready to handle exception conditions when:
- There is TCP out-of-band data.

- Typically, only the readset is used.
- Timeout specifies how long we're willing to wait for a fd to become ready.
- struct timeval {

long tv_sec; /* seconds */
long tv_usec; /* microseconds */
};

- There are 3 cases for timeout:
- If timeout is NULL, we wait forever or until we catch a signal.
- If timeout is zero, we test and return immediately.
- Otherwise, we wait up to specified time.

8. Descriptor Sets:
- Typically implemented as an array of integers where each bit corresponds

to a descriptor (except in Windows).
- Implementation is hidden in the fd_set data type.
- FD_SETSIZE is the number of descriptors in the data type.
- Macros:

- void FD_ZERO(fd_set *fdset); //Clears all bits in fdset.
- void FD_SET(int fd, fd_set *fdset); //Turn on the bit for fd in fdset.
- void FD_CLR(int fd, fd_set *fdset); //Turn off the bit for fd in fdset.
- int FD_ISSET(int fd, fd_set *fdset); //Is the bit for fd on in fdset?

Week 11 Notes

- E.g. Consider the code snippet below.
fd_set rset;

FD_ZERO(&rset); // Initialize the set. All bits are off.
FD_SET(1, &rset); // Turn on bit for fd 1.
FD_SET(4, &rset); // Turn on bit for fd 4.
FD_SET(5, &rset); // Turn on bit for fd 5.

- Select modifies the descriptor sets pointed to by the readset, writeset, and
exceptset pointers.When we call the function, we specify the values of the
descriptors that we are interested in, and on return, the result indicates
which descriptors are ready. We use the FD_ISSET macro on return to
test a specific descriptor in an fd_set structure. Any descriptor that is not
ready on return will have its corresponding bit cleared in the descriptor set.
To handle this, we turn on all the bits in which we are interested in all the
descriptor sets each time we call select.

9. Bit Strings:
- Signal mask and file descriptor sets are implemented using bit array or bit

strings.
- Each bit represents an element of the set:

- 1 means that the element is in the set.
- 0 means that the element is not in the set

- Bitwise operators:
Operator and Name Description

& (AND) It copies a bit to the result if it exists in both operands.

| (OR) It copies a bit to the result if it exists in either operand.

^ (XOR) It copies the bit to the result if it is in exactly one operand.

~ (Complement) Flips all 0’s to 1’s and vice versa.

<< (Left shift) All bits are shifted left by the given number.

>> (Right shift) All bits are shifted left by the given number.
- Note: Left and right shift will cause bits to fall off the ends.
- E.g. Suppose that A is 0011 1100 and B is 0000 1101. Then:

- (A&B) is 0000 1100
- (A|B) is 0011 1101
- (A^B) is 0011 0001
- (~A) is 1100 0011
- (A << 2) is 1111 0000
- (B >> 3) is 0000 0001

Week 11 Notes

- Precedence of bit operators:
Highest: ~

 &
 ^

Lowest: |
- Flags are often implemented as a bit mask.

E.g.
open(“temp”, O_WRONLY | O_CREAT);
#define O_RDONLY 00
#define O_WRONLY 01
#define O_RDWR 02
#define O_CREAT 0100

- FD_SETSIZE is bigger than 32.
- struct bits {

unsigned int field[N];
}
typedef struct bits Bitstring;
Bitstring a, b;
setzero(&a);
b = a;
a.field[0] = ~0;

- The set function sets one bit to 1. This is predefined in the C library.
int set(unsigned int bit, Bitstring *b) {

int index = bit / 32;
b->field[index] |= 1 << (bit % 32);
return 1;

}
- The unset function sets one bit to 0. This is predefined in the C library.

int unset(unsigned int bit, Bitstring *b) {
int index = bit / 32;
b->field[index] &= ~(1 << (bit % 32));

}
- The ifset function checks if a bit is set in the bit string. This is predefined in

the C library.
int ifset(unsigned int bit, Bitstring *b) {

int index = bit / 32;
return ((1 << (bit % 32)) & b->field[index]);

}
- The setzero function sets all bits to 0. This is predefined in the C library.

int setzero(Bitstring *b){
if(memset(b,0, sizeof(Bitstring)) == NULL)

return 0;
else

return 1;
}

Week 11 Notes

- The intToBinary function converts an int to binary. This is predefined in the
C library.
char *intToBinary(unsigned int number) {

char *binaryString = malloc(32+1);
int i; binaryString[32] = '\0';
for (i = 31; i >= 0; i--) {

binaryString[i] = ((number & 1) + '0');
number = number >> 1;

}
return binaryString;

}
10.Concurrency:

- The two key concepts driving computer systems and applications are:
- Communication: The conveying of information from one entity to

another.
- Concurrency: The sharing of resources in the same time frame.

- Concurrency can exist in a single processor as well as in a multiprocessor
system.

- Managing concurrency is difficult, as execution behaviour is not always
reproducible.

11.Race conditions:
- A race condition occurs when multiple processes are trying to do

something with shared data and the final outcome depends on the order in
which the processes run.

- E.g.

Week 11 Notes

12.Producer/Consumer Problem:

- The scenario goes as follows:
- Suppose there are two processes, the producer and the consumer,

who share a common, fixed-size buffer. The producer's job is to
generate data, put it into the buffer, and start again. At the same
time, the consumer is consuming (removing) the data, one piece at
a time. The problem is to make sure that the producer won't try to
add data into the buffer if it's full and that the consumer won't try to
remove data from an empty buffer.

- The consumer should be blocked when buffer is empty.
- The producer should be blocked when buffer is full.
- The producer and consumer should run independently as far as buffer

capacity and contents permit.
- The producer and consumer should never be updating the buffer at the

same time (otherwise data integrity cannot be guaranteed).
- The producer/consumer is a harder problem if there are more than one

consumer and/or more than one producer.
- Programs that manage shared resources must protect the integrity of the

shared resources.
- Operations that modify the shared resource are called critical sections.
- Critical section must be executed in a mutually exclusive manner.
- Semaphores are commonly used to protect critical sections.

Week 11 Notes

13.Semaphores:
- Code that modifies shared data usually has the following parts:

- Entry section: The code that requests permission to modify the
shared data.

- Critical Section: The code that modifies the shared variable.
- Exit Section: The code that releases access to the shared data.
- Remainder: The remaining code.

- Useful in process synchronization and multithreading.
- The way semaphores work is that:

1. You call a function, acquire.
acquire(v): Blocks until the value of the semaphore variable v until
it is greater than 0 then it decrements v.

2. You call a function, release.
release(v): Increments v.

- The structure of how semaphores work is that:
1. Create a semaphore variable v.
2. init(v)
3. acquire(v)
4. Critical section of code.
5. release(v)
6. Remainder of code.

List of Unix Commands:
Note: Some of these commands may have extensions/options. Use the man command
to read more about them.

Commands What it does

bg job Puts job in the background.

cat file1 Displays the content of file1.

cd dir Changes directory from the current working directory to dir.

chmod (option) file1 Lets you change the read, write, and execute permissions on file1.

clear Clears the terminal.

cp file1 file2 Creates a copy of file1 called file2.

cp file1 dir1 Copies file1 into dir1.

cp -r dir1 dir2 Copies dir1 into dir2

echo string Prints string on the terminal.

fg job Puts job in the foreground.

grep pattern file1 Searches file1 for pattern, and displays all lines that contain pattern.

head (option) (num) file1 Prints the first 10 lines of file1, by default. If you want to set the
number of lines this prints, you need to do: head -n num file1 and it
will print the first num lines of file1.
E.g. head file1 will print the first 10 lines of file1.
E.g. head -n 3 file1 will print the first 3 lines of file1.

history Prints a list of all past commands typed in the current terminal
session.

less file1 Displays the contents of file1. Less is a similar to more, but which
allows backward and forward movement in the file. Furthermore, less
doesn’t have to read the entire input file before starting, so it is faster
than some text editors for large input files.

ln target link This creates a hard link between target and link.

ln -s target link This creates a soft link between target and link.

ls Lists all files and directories in the current directory.

ls - R Lists files in the sub-directories, as well

ls - a Lists hidden files as well

ls - al Lists files and directories with detailed information like permissions,
size, owner, etc.

jobs Gives you a list of jobs, each of which is associated with a job
number.

man command Gives help information on command.

mkdir directory Creates a new directory in the current working directory or at the
specified path.

more file1 Displays the contents of file1.

mv file1 file2 Moves file1 into file2. If file2 doesn’t exist, then it renames file1 to
file2.

ps Prints the current running processes.

pwd Prints the absolute path of the current working directory.

rm file1 Deletes file1.

rmdir directory1 Deletes directory1.

sort file1 This rearranges the lines in file1 so that they are sorted, numerically
and alphabetically. By default, the rules for sorting are:

1. Lines starting with a number will appear before lines starting
with a letter.

2. Lines starting with a letter that appears earlier in the alphabet
will appear before lines starting with a letter that appears later
in the alphabet.

3. If two or more lines, of different lengths, share the first x
number of letters, then sort will print the lines from shortest
length to longest.

4. Lines starting with a lowercase letter will appear
before lines starting with the same letter in uppercase, if they
have the same length.

Note: sort does not affect the original file in any way.

E.g. Suppose we have a file called file1 that contains these lines
my name is rick
My name is rick
1
Then, if we do sort file1, we get the following:
1
my name is rick
My name is rick

E.g. Suppose we have a file called file2 that contains these lines
my name is rick lan
My name is rick
1
Then, if we do sort file2, we get the following:
1
My name is rick
my name is rick lan

stat file1/dir1 Gives detailed information about file1/dir1

tail (option) (num) file1 Prints the last 10 lines of file1, by default. If you want to set the
number of lines this prints, you need to do: last -n num file1 and it will
print the last num lines of file1.
E.g. last file1 will print the last 10 lines of file1.
E.g. last -n 3 file1 will print the last 3 lines of file1

uniq file1 Prints out the contents of file1 but removes all the duplicates in
adjacent lines.

E.g. Suppose we have a file called file1 and it contains the following:
cat
cat
cat
dog
dog
Then, if we do uniq file1, it would print
cat
dog

E.g. Suppose we have a file called file2 and it contains the following:
cat
dog
cat
dog
cat
Then, if we do uniq file2, it would print
cat
dog
cat
dog
cat

vi file1 Creates a file called file1.

wc file1 Prints the number of lines, words, and characters file1 has.

E.g. Suppose we have a file called file1 and it contains the following:
cat
dog
cat
dog
cat
Then, if we do wc file1, we get:
5 5 20 file1
The first 5 means there are 5 lines in file1.
The second 5 means there are 5 words in file1.
The 20 means there are 20 characters in file1. Note that because
there is a space after each line, there are 20 characters.

Redirection:
1. Standard Input (stdin):

- The file descriptor for stdin is 0.
- Denoted as <.
- E.g. cat < file1 works the same as cat file1.

2. Standard Output (stdout):
- The file descriptor for stdout is 1.
- Denoted as either > or >>.
- The general form is command > file or command >> file, where

command is any command that outputs to stdout.
- Note: If file was not created before, then this will create it for you.
- > will redirect the output to a file. This will overwrite whatever was in the

file before.
- >> will append the output to a file. This will add the output to the end of

whatever was in the file before.
- E.g. Suppose we have 2 files, file1 and file2.

Suppose the contents of file1 is 12345 and the contents of file2 is abcde.
If we do cat file1 >> file2 and then do cat file2, the output of cat file2 is:
abcde
12345
If we do cat file2 > file1 and then do cat file1, the output of cat file1 is:
abcde
12345

3. Standard Error (stderr):
- The file descriptor for stderr is 2.
- Denoted as 2> or 2>>.
- The general form is command error 2> file or command error 2>> file.
- Note: If file was not created before, then this will create it for you.
- 2> will redirect the error message into the file.
- 2>> will append the error message into the file.
- This is useful for shell scripting because you usually do not want error

messages cluttering up the normal program output.
- E.g. Suppose that there is no file in the current working directory called x.

Suppose we do cat x 2> file1. This will overwrite the contents of file1 with
the error message.

- E.g. Suppose that there is no file in the current working directory called x.
Suppose we do cat x 2>> file1. This will append the contents of file1 with
the error message.

